首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31779篇
  免费   2509篇
  国内免费   1228篇
工业技术   35516篇
  2024年   59篇
  2023年   568篇
  2022年   695篇
  2021年   1193篇
  2020年   910篇
  2019年   825篇
  2018年   914篇
  2017年   975篇
  2016年   855篇
  2015年   1153篇
  2014年   1535篇
  2013年   1814篇
  2012年   1958篇
  2011年   2052篇
  2010年   1805篇
  2009年   1767篇
  2008年   1621篇
  2007年   1639篇
  2006年   1781篇
  2005年   1598篇
  2004年   1025篇
  2003年   933篇
  2002年   889篇
  2001年   774篇
  2000年   873篇
  1999年   932篇
  1998年   776篇
  1997年   673篇
  1996年   661篇
  1995年   528篇
  1994年   434篇
  1993年   319篇
  1992年   249篇
  1991年   198篇
  1990年   149篇
  1989年   115篇
  1988年   92篇
  1987年   48篇
  1986年   35篇
  1985年   24篇
  1984年   17篇
  1983年   12篇
  1982年   22篇
  1981年   14篇
  1980年   3篇
  1979年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 280 毫秒
31.
Compositional analysis of boron carbide on nanometer length scales to examine or interpret atomic mechanisms, for example, solid-state amorphization or grain-boundary segregation, is challenging. This work reviews advancements in high-resolution microanalysis to characterize multiple generations of boron carbide. First, ζ-factor microanalysis will be introduced as a powerful (scanning) transmission electron microscopy ((S)TEM) analytical framework to accurately characterize boron carbide. Three case studies involving the application of ζ-factor microanalysis will then be presented: (1) accurate stoichiometry determination of B-doped boron carbide using ζ-factor microanalysis and electron energy loss spectroscopy, (2) normalized quantification of silicon grain-boundary segregation in Si-doped boron carbide, and (3) calibration of a scanning electron microscope X-ray energy-dispersive spectroscopy (XEDS) system to measure compositional homogeneity differences of B/Si-doped arc-melted boron carbides in the as-melted and annealed conditions. Overall, the improvement and application of advanced analytical tools have helped better understand processing–microstructure–property relationships and successfully manufacture high-performance ceramics.  相似文献   
32.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
33.
The temperature-responsive bulky hydrogel with fast response rate and satisfactory mechanical property has fascinating application potential in many aspects, such as the implantable macroscale controlled drug release carrier for post-surgical therapy; however, creating such a smart hydrogel was proven extremely challenging. Here a novel type of temperature-responsive bulky hydrogel with ultrafast response rate and super compressible elasticity was fabricated by the fibrous freeze-shaping technique using shortened temperature-responsive polymer based electrospun hollow nanofibers as building blocks, followed by heat treatment for endowing the hydrogel with high stability in water. Because the hydrogel has hierarchical porous structure and its constituent nanofibers have hollow structure, which are beneficial to diffusion of its embodied water during temperature-induced volume phase transition, its temperature-response time is less than 30 s. In addition, the hierarchical porous structure benefits dissipation of the compression stress exerted on the hydrogel. Fluorescein isothiocyanate (FITC)-dextran as a model biomacromolecular drug, was loaded into the shells of the hollow nanofibers during coaxial electrospinning, and the ultimately obtained nanofibrous hydrogel can release its loaded FITC-dextran in a 'on–off' switchable fashion in response to temperature alternation between 15 and 47°C. Cell cytotoxicity test results demonstrate that the temperature-responsive nanofibrous hydrogel is biocompatible.  相似文献   
34.
35.
Poly(2-oxazoline)s have excellent biocompatibility and have been used as FDA-approved indirect food additives. The inert property of the hydrophilic poly(2-oxazoline)s suggests them as promising substitutes for poly(ethylene glycol) (PEG) in various applications such as anti-biofouling agents. It was recently reported that poly(2-oxazoline)s themselves have antimicrobial properties as synthetic mimics of host defense peptides. These studies revealed the bioactive properties of poly(2-oxazoline)s as a new class of functional peptide mimics, by mimicking host defense peptides to display potent and selective antimicrobial activities against methicillin-resistant Staphylococcus aureus both in vitro and in vivo, without concerns about antimicrobial resistance. The high structural diversity, facile synthesis, and potent and tunable antimicrobial properties underscore the great potential of poly(2-oxazoline)s as a class of novel antimicrobial agents in dealing with drug-resistant microbial infections and antimicrobial resistance.  相似文献   
36.
0.5 at.% Cr:ZnGa2O4 precursor was synthesized by the co-precipitation method with nitrates as raw materials, using ammonium carbonate as the precipitant. Low-agglomerated Cr:ZnGa2O4 powders with an average particle size of 43 nm were obtained by calcining the precursor at 900℃ for 4 h. Using the powders as starting materials, 0.5 at.% Cr:ZnGa2O4 ceramics with an average grain size of about 515 nm were prepared by presintering at 1150℃ for 5 h in air and HIP post-treatment at 1100℃ for 3 h under 200 MPa Ar. The in-line transmittance of 0.5 at.% Cr:ZnGa2O4 ceramics with a thickness of 1.3 mm reaches 59.5% at the wavelength of 700 nm. The Cr:ZnGa2O4 ceramics can be effectively excited by visible light and produce persistent luminescence at 700 nm. For Cr:ZnGa2O4 transparent ceramics, the brightness of afterglow was larger than 0.32 mcd/m2 after 30 min, which is far superior to that of Cr:ZnGa2O4 persistent luminescence powders.  相似文献   
37.
A high-throughput (105.5 g/h) passive four-stage asymmetric oscillating feedback microreactor using chaotic mixing mechanism was developed to prepare aggregated Barium sulfate (BaSO4) particles of high primary nanoparticle size uniformity. Three-dimensional unsteady simulations showed that chaotic mixing could be induced by three unique secondary flows (i.e., vortex, recirculation, and oscillation), and the fluid oscillation mechanism was examined in detail. Simulations and Villermaux–Dushman experiments indicate that almost complete mixing down to molecular level can be achieved and the prepared BaSO4 nanoparticles were with narrow primary particle size distribution (PSD) having geometric standard deviation, σg, less than 1.43 when the total volumetric flow rate Qtotal was larger than 10 ml/min. By selecting Qtotal and reactant concentrations, average primary particle size can be controlled from 23 to 109 nm as determined by microscopy. An average size of 26 nm with narrow primary PSD (σg = 1.22) could be achieved at Qtotal of 160 ml/min.  相似文献   
38.
39.
Permian marine strata have gradually become a research focus in the world. The marine strata of the Late Permian Dalong Formation (P3d) in the Fenghai area, Fujian Province, have become more and more important as their geochemical characteristics record important geological information and are a good indicator for recovering and reconstructing the paleosedimentary environments and tectonic attributes. The major elements, trace elements and rare earth elements were analyzed by XRF and ICP-MS, respectively. Based on the results of detailed field geological surveys, profile measurements as well as typical sample collection, the tectonic setting and provenance of Permian marine mudstone were comprehensively discussed. The results showed that the Dalong Formation (P3d) was deposited in an active continental margin tectonic environment as revealed by the relation between Fe2O3 + MgO and TiO2 and Al2O3/SiO2. The fingerprint characteristics of Mn, Fe, Co, Ni and REE and the ratio of U/Th, V/Cr, Sr/Ba, (La/Yb)N and V/(V + Ni) indicated that the sedimentary provenance was mainly derived from potassium feldspar, followed by muscovite. Sedimentary water bodies showed a gradually decreasing depositional rate trend, water depth gradually shallowing and paleo-salinity and productivity gradually increasing. Moreover, since transient delamination occurred during sedimentary processes, sedimentary water bodies showed obvious neritic characteristics. It was consistent with the results revealed by lithological and geochemical characteristics. Calcareous mudstone and siltstone transitioned into fine sandstone from bottom to top, indicating paleo-water bodies became shallow. The research results provided good reference and guidance for understanding Permian paleo-sedimentary environments and tectonic attributes of the Yong’an area, Fujian Province, southeastern China.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号